ATP adalah singkatan adenosin trifosfat, bahan kimia penting dalam metabolisme manusia yang telah disebut “mata uang kimia” karena sel-sel menggunakannya sebagai sumber energi langsung. Anda membuat ATP ketika Anda membakar gula dan nutrisi lainnya, dan sel-sel Anda mengkonsumsi ATP ketika mereka terlibat dalam kegiatan seperti membangun molekul yang lebih besar dan menghasilkan gerakan. Kimiawi ATP ATP adalah molekul yang relatif kecil yang berfungsi sebagai “energi menengah” dalam metabolisme manusia. Pada dasarnya, sel-sel Anda mengekstrak energi kimia dari berbagai molekul nutrisi seperti protein, karbohidrat dan protein, dan menggunakan energi kimia untuk membuat ATP. Sel-sel kemudian memecah ATP, melepaskan energi, karena mereka terlibat dalam berbagai kegiatan, penjelasan Drs. Reginald Garrett dan Charles Grisham dalam buku mereka “Biokimia.” Pembakaran nutrisi Bila Anda mengkonsumsi makanan, usus Anda menyerap molekul nutrisi ke dalam aliran darah. Sel kemudian mengambil nutrisi dan membakar mereka secara kimia untuk membebaskan energi. Misalnya, salah satu sumber yang paling penting dari energi sel adalah glukosa, molekul yang berasal dari pati dan kebanyakan gula. Saat sel memecah glukosa, mereka menghasilkan produk-produk limbah karbon dioksida dan air. Mereka menggunakan energi yang dibebaskan dari memecah satu molekul glukosa untuk membuat sekitar 30 molekul ATP. Pemecahan ATP Setelah sel telah membuat ATP, dapat menggunakan ATP untuk memenuhi salah satu kebutuhan energinya. Sel membutuhkan energi untuk membuat molekul besar, seperti hormon. Sel-sel otot menggunakan ATP untuk menghasilkan gerakan. Saat sel membuat sebuah molekul hormon, itu memecah molekul ATP dan menggunakan energi untuk membuat ikatan baru antara molekul yang lebih kecil untuk menghasilkan satu yang lebih besar, penjelasan Drs. Garrett dan Grisham. Ketika sel otot berkontraksi, menggunakan jumlah besar ATP untuk bahan bakar kontraksi. Strategi metabolik Meskipun sel-sel manusia dapat membuat sekitar 30 ATP per molekul glukosa – dan juga dapat membuat sejumlah besar dan bervariasi dari ATP dari pembakaran protein dan lemak – tidak semua hasil metabolisme glukosa dapat memproduksi banyak ATP. Anda hanya bisa membuat dua molekul ATP per glukosa jika Anda membakar gula tanpa oksigen, proses yang disebut metabolisme anaerobik. Dr. Lauralee Sherwood, dalam bukunya “Fisiologi Manusia,” menjelaskan bahwa sel beroperasi secara anaerob selama selama berolahraga keras. Pensinyala ATP Salah satu peran penting akhir ATP dalam tubuh adalah untuk melayani sebagai sinyal seluler. Misalnya, karena sel-sel Anda dapat membakar nutrisi baik segera atau menyimpannya untuk digunakan kemudian, sel-sel menggunakan ATP untuk membantu mereka menentukan yang harus mereka lakukan. Jika sel memiliki banyak ATP, ATP memberi sinyal sel untuk menyimpan nutrisi daripada membakar mereka. Namun jika sel dalam keadaan rendah ATP, sinyal akan menunjukkan bahwa sel harus membakar nutrisi segera.
Untukdapat digunakan oleh sel, energi yang dihasilkan harus diubah menjadi ATP (Adenosin TriPhospat). ATP merupakan gugus adenin yang berikatan dengan tiga gugus fosfat. Pelepasan gugus fosfat menghasilkan energi yang digunakan langsung oleh sel, yang digunakan untuk melangsungkan reaksi-reaksi kimia, pertumbuhan, transportasi, gerak
ads Bagaimanakah ATP dapat menghasilkan energi untuk kegiatan metabolisme ? ATP atau Adenosin Trifosfat adalah nukleotida yang terdiri dari 3-fosfat dengan peran penting dalam perpindahan intraseluler. ATP terbentuk dari proses fosforilasi oksidatif yang terjadi di mitokondria pada saat tumbuhan sedang berfotosintesis. Untuk lebih jelasnya, kita lihat rangkuman proses pembentukan ATP di bawah ini. Nama proses fosforilasi oksidatif Materi pembentuk glukosa dan asam lemak Hasil proses 1 molekul Glukosa => 2 molekul ATP Molekul pembentuk Adenosin Difosfat ADP dan Adenosin Monofosfat AMP Berikut ini juga akan dijelaskan beberapa fungsi dan peranan dari ATP, agar Anda bisa lebih jelas mengenal keberadaan ATP. Penyimpan dan melakukan transisi energy kimia dalam sel Menyimpan bahan pembentuk energi yang berasal dari respirasi sel Memproduksi asam nukleotida Dalam metabolism, ATP berperan penting sebagai tambahan energy atau sebagai sumber energy itu sendiri. Tahapan ATP dalam metabolisme antara lain 1. Membantu daur energi di dalam sel. Dalam proses daur energy ini, terdapat kerja oksidasi yang ternyata tidak memenuhi standar panas yang dibutuhkan sebagai sumber energy. Daur energy ini membutuhkan bentuk energy bebas yang terkandung dalam molekul organic, yang merupakan ATP dalam struktur ikatan kovalennya. Pada proses ini ATP berperan untuk menambah panas energy yang dibutuhkan pada bagian sel yang memerlukan energy lebih. 2. Mengangkut energy kimia dalam. Dalam reaksi katabolisme, ATP mengangkut energy kimia pada sel yang membutuhkan energy darurat, seperti pada proses biosintesis, kontraksi otot, pemancaran sinar pada kunang-kunang, dan sebagainya. 3. Sebagai cadangan energy. Apabila konsentrasi ATP cukup besar, maka ATP akan menjadi cadangan energy di sel otot dan menjadi suatu perantara enzim yang akan melangsungkan reaksi metabolism. ads ads Share This Page
Energiyang lepas tersebut digunakan untuk membentuk adenosin trifosfat (ATP), yang merupakan sumber energi untuk seluruh aktivitas kehidupan. Bila pembongkaran suatu zat dalam lingkungan cukup oksigen (aerob) disebut proses respirad, bila dalam lingkungan tanpa oksigen (anaerob) disebut fermentasi.
Katabolisme adalah proses alami di dalam tubuh untuk menghasilkan energi. Proses ini memungkinkan tubuh untuk bergerak dan menjalani aktivitas sehari-hari. Nah, untuk memahami lebih jauh tentang katabolisme, mari simak penjelasannya berikut ini. Berbagai proses biokimia berlangsung di dalam tubuh. Proses ini disebut juga metabolisme. Reaksi metabolisme sendiri terbagi menjadi dua jenis, yaitu katabolisme dan anabolisme. Katabolisme merupakan proses pemecahan molekul-molekul besar dan kompleks menjadi bentuk yang lebih sederhana, dan salah satunya adalah kalori atau energi. Bentuk sederhana ini kemudian akan digunakan sebagai bahan bakar untuk reaksi anabolisme guna menghasilkan zat atau molekul yang lebih besar. Reaksi Katabolisme di Tubuh Makanan dan minuman yang sudah dikonsumsi dan masuk ke dalam tubuh, akan dipecah oleh enzim yang ada di dalam sistem pencernaan. Melalui reaksi katabolisme, protein dipecah menjadi asam amino. Asam amino bisa digunakan sebagai sumber energi ketika tubuh membutuhkannya. Senyawa ini juga bisa didaur ulang untuk membuat protein atau menjadi urea melalui proses oksidasi. Selain memecah protein, katabolisme juga bisa memecah glikogen menjadi glukosa. Karbohidrat sederhana ini kemudian akan melalui proses oksidasi yang dinamakan glikolisis. Dari reaksi inilah energi dihasilkan. Sementara, lemak juga akan melalui proses pemecahan yang disebut hidrolisis. Proses ini menghasilkan asam lemak dan gliserol, yang selanjutnya akan melalui reaksi glikolisis dan reaksi biokimiawi lainnya sehingga terbentuklah energi. Energi yang dihasilkan dari berbagai proses di atas akan disimpan sebagai molekul adenosine triphospate ATP. Banyak aspek dari metabolisme, baik anabolisme maupun katabolisme, berkaitan erat dengan produksi dan konsumsi ATP sebagai sumber energi, yang juga berperan sebagai bahan bakar dalam seluruh proses metabolisme. Olahraga seperti berlari, berenang, dan bersepeda adalah jenis kegiatan yang merupakan latihan katabolis atau kardio. Ketika melakukan aktivitas ini, detak jantung, tekanan darah, dan pernapasan akan meningkat. Latihan katabolis dapat membantu Anda menjaga kesehatan jantung dan paru-paru. Namun, sebelum melakukan olahraga kardio, sebaiknya konsultasikan lebih dulu ke dokter, terlebih jika Anda memiliki kondisi kesehatan tertentu. Hormon-Hormon yang Terlibat dalam Reaksi Katabolisme Dalam proses katabolisme, tubuh membutuhkan bantuan hormon dan zat tertentu. Berikut ini adalah sejumlah hormon yang berperan dalam proses katabolisme Kortisol Hormon ini berperan dalam mengatur metabolisme protein, lemak, dan karbohidrat. Hormon yang dikenal sebagai hormon stres’ ini dihasilkan oleh kelenjar adrenal. Sitokin Hormon ini mengatur interaksi antarsel dan berperan dalam mengatur sistem kekebalan tubuh. Beberapa jenis sitokin berfungsi untuk merangsang sistem imun, sedangkan beberapa jenis sitokin lainnya berfungsi dalam menekan aktivitas sistem imun. Glukagon Hormon ini dihasilkan oleh pankreas dan bersama insulin berfungsi untuk menjaga kadar gula dalam darah. Adrenalin Hormon yang dikenal sebagai epinefrin ini dapat meningkatkan detak jantung, menguatkan kontraksi jantung, dan meningkatkan aliran darah ke otot. Proses katabolisme sangat penting bagi tubuh dalam menghasilkan energi. Dengan energi, jantung bisa berdetak sehingga seluruh jaringan tubuh pun mendapat suplai darah. Berbagai organ tubuh lain, seperti paru-paru, ginjal, dan saluran pencernaan, juga dapat berfungsi secara optimal. Bila Anda mengalami masalah dengan kesehatan atau gangguan hormon yang dapat memengaruhi proses katabolisme, jangan ragu untuk berkonsultasi dengan dokter. Selain itu, terapkan pola hidup sehat dengan berolahraga secara rutin, mengonsumsi makanan bergizi, dan beristirahat yang cukup.
Dariproses respirasi inilah dapat dihasilkan energi. Jadi, mitokondria berfungsi untuk tempat respirasi sel atau sebagai pembangkit energi. Mitokondria mempunyai enzim yang dapat mengubah energi potensial dari makanan kemudian disimpan dalam bentuk ATP. ATP inilah yang merupakan sumber energi sebagai bahan bakar untuk melakukan proses kegiatan
Pengertian Katabolisme. Katabolisme adalah proses penguraian atau pemecahan senyawa organik kompleks menjadi senyawa sederhana untuk menghasilkan energi dalam bentuk ATP Adenosin Tri Phosfat.Dalam proses katabolisme, terjadi pelepasan energi sebagai hasil pemecahan senyawa- senyawa organik kompleks tersebut. Contoh dari proses katabolisme adalah respirasi perubahan energinya, reaksi kimia dapat dibedakan menjadi reaksi eksergonik dan reaksi merupakan reaksi eksergonik. Jika energi yang dilepaskan berupa panas, maka reaksinya disebut reaksi eksoterm. Adapun pada reaksi endergonik, terjadi penyerapan energi dari termasuk reaksi endergonik karena memerlukan energi. Jika energi yang digunakan dalam bentuk panas, maka reaksinya disebut reaksi Respirasi SelularRespirasi selular diartikan sebagai reaksi oksidasi molekul berenergi tinggi untuk melepaskan energinya. Respirasi selular terjadi pada semua sel tubuh hewan maupun tumbuhan terutama di termasuk ke dalam kelompok katabolisme karena di dalamnya terjadi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana, diikuti dengan pelepasan respirasi selular, molekul glukosa karbohidrat dan bahan makanan lain diuraikan atau dipecah menjadi karbon dioksida CO2, air H2O, dan energi dalam bentuk keterlibatan oksigen dalam prosesnya, respirasi selular terbagi menjadi respirasi aerob dan respirasi Respirasi AerobRespirasi aerob adalah respirasi yang membutuhkan oksigen untuk menghasilkan energi. Respirasi aerob disebut juga pernapasan, dan terjadi di paru-paru. Sedangkan, pada tingkat sel respirasi terjadi pada organel Respirasi AnaerobRespirasi anaerob adalah respirasi yang tidak membutuhkan oksigen untuk menghasilkan energi. Respirasi anaerob juga menggunakan glukosa sebagai substrat. Respirasi anaerob sering disebut juga yang melakukan fermentasi di antaranya adalah bakteri dan protista yang hidup di rawa, lumpur, makanan yang diawetkan, atau tempat-tempat lain yang tidak mengandung Respirasi Selular Proses Respirasi aerob dapat dibedakan menjadi empat tahap, yaitu Glikolisis, Dekarboksilasi Oksidatif, Daur siklus Krebs, dan Sistem Transfer Elektron. Gambar berikut dapat menjelaskan dengan lebih Respirasi Selular, Katabolime KarbohidratGlikolisisGlikolisis adalah peristiwa pengubahan molekul glukosa senyawa dengan 6 atom C menjadi 2 molekul yang lebih sederhana, yaitu asam piruvat senyawa dengan 3 atom C. Tahap ini merupakan awal terjadinya respirasi sel. Molekul glukosa akan masuk ke dalam sel melalui proses difusi. Glikolisis berlangsung dalam sitoplasma utama dari proses glikolisis adalah dua asam piruvat, dua NADH dan dua ATP. Gambar berikut menjelaskan reaksi pada proses glikolisis secara sederhana dengan meniadakan sebagian Glikolisis Repirasi Selular pada Katabolisma Karbohidrat,Proses pada gliolisis dapat dibagi menjadi dua tahap utama yaitu tahap yang membutuhkan energi disebut dengan istilah energy investment phase dan tahap yang menghasilkan energi disebut dengan energy payoff Investasi Energy, Energy Investment PhaseFasa investasi energi merupakan tahap perubahan glukosa menjadi gliseraldehid-3-fosfat disingkat dengan PGAL yang diaktifkan oleh energi ATP dengan bantuan beberapa Enzim. Jadi, reaksi hanya akan berlangsung jika ada energi dalam bentuk dapat bereaksi, glukosa diberi energi aktivasi berupa satu ATP. Hal ini mengakibatkan glukosa dalam keadaan terfosforilasi menjadi glukosa-6-fosfat yang dibantu oleh enzim glukosa-6-fosfat dipecah menjadi 2 buah molekul gliseraldehid-3-fosfat PGAL dengan bantuan satu ATP dan enzim Pembentukan Energy, Energy Payoff PhasePada tahap ini, terjadi pengubahan dua senyawa gliseraldehid 3-fosfat PGAL 3 atom C, menjadi dua senyawa asam piruvat 3 atom C. Konversi PGAL ke asam piruvat ini disertai dengan terbentuknya NADH Nikotinamida Adenin Dinukleotida dan ATPTahap glikolisis tidak membutuhkan oksigen atau reaksinya bersifat Oksidatif dan Dehidrogenasi Asam PiruvatReaksi pembentukan asetil Co-A ini sering disebut sebagai reaksi transisi karena menghubungkan proses glikolisis dengan daur siklus Krebs. Reaksi Ini dikenal juga dengan istilah Link Reaction Atau Reaksi penghubung yaitu reakssi yang menghubungkan glikolisis dengan siklus ini terjadi dua kali untuk satu molekul glukosa. Untuk dua asam piruvat pada reaksi Dekarboksilasi akan menghasilkan dua asetil Ko-A, dua NADH dan dua asetil Co-A pada organisme eukariotik berlangsung dalam matriks mitokondria, sedangkan pada organisme prokariotik berlangsung dalam berikut dapat menjelaskan proses reaksi transisi pembentukan Aseti Co-A secara lebih Oksidasi, Katabolisme Karbohidrat, Koenzim ASetiap asam piruvat tiga karbon akan terurai menjadi gugus asetil dua karbon dan CO2. Gas CO2 ini selanjutnya berdifusi ke luar sel. Gugus asetil bergabung dengan koenzim A Co-A membentuk asetil Ko-A. Hidrogen dan electron yang terlepas selama reaksi bergabung dengan koenzim NAD+ Nikotinamide Adenin Dinukleotida membentuk NADH. Koenzim A yang terlibat pada pembentukan asetil Ko-A ini merupakan turunan dari vitamin reaksi transisi ini asam piruvat mengalami reaksi dekarboksilasi dan reaksi dehidrogenasi. Akibat Dekarboksilasi asam piruvat mengalami pengurangan satu atom karbon dan akibat reaksi dehidrogenasi atau reaksi oksidasi asam piruvat melepas atom karbon dari asam piruvat berubah bentuk menjadi CO2. Sedangan atom hidrogen yang dilepas asam piruvat ditangkap oleh akseptor electron NAD+ membentuk Krebs – Siklus Asam Krebs merupakan Tahap ketiga dari rangkaian respirasi aerob. Reaksi siklus Krebs berlangsung di kompartemen bagian dalam mitokondria. Reaksi untuk dua piruvat pada siklus Krebs menghasikan 2 ATP, 6 NADH dan 2 Berikut menjelaskan reaksi yang berlangsung pada siklus Krebs atau siklus asam sitrat dengan lebih Siklus Krebs – Siklus Asam Sitrat Repirasi Selular pada Katabolisma KarbohidratTahap ini dimulai dengan atom dua-karbon dari asetil Ko-A ditransfer sehingga bergabung dengan oksaloasetat empat-karbon dan membentuk asam sitrat 6-karbon. Karena reaksi pembentukan asam sitrat ini, siklus Krebs sering disebut sebagai Siklus Asam berikutnya adalah terbentuknya dua CO2 dari dua kali reaksi. Gas CO2 meninggalkan sel, diikuti dengan dua NAD+ menerima ion Hidrogen dan electron untuk membentuk dua NADH. Terbentuknya CO2 berarti telah terjadi pengurangan karbon dari dua senyawa intermediat. Masing senyawa intermediat kehilangan satu Energi ATP terbentuk dalam fosforilasi tingkat substrat. Kemudian Koenzim FAD dan NAD+ menerima ion hydrogen dan electron membentuk FADH dab akhir Rangkaian siklus Krebs atau Siklus sitrat ini ditandai dengan terbentuknya kembali oksaloasetat reaksi siklus Krebs atau siklus asam sitrat ini berjalan dua kali untuk tiap molekul glukosa. Karena Satu glukosa dikonversi menjadi dua asam piruvat. Untuk mempermudah pemahaman, maka beberapa tahap reaksi intermediat tidak dideskripsikan, namun secara keseluruhan masih dapat merepresentasikan siklus Transpor Atau Transfer ElektronTahap terakhir dari respirasi seluler aerob adalah sistem transfer atau transport elektron. Tahap Transfer electron terjadi pada ruang intermembran mitokondria krista atau membrane dalam mitokrondria. Dan pada tahap transfer electron inilah dihasilkan energi dalam bentuk ATP yang paling tiga proses sebelumnya yaitu glikoliis, karboksilasi dan siklus Krebs, dihasilkan beberapa akseptor electron seperti NADH Nicotinamide Adenine Dinucleotide dan FADH Flavin Adenine Dinucleotide yang bermuatan akibat penambahan ion hydrogen dan akseptor ini kemudian akan masuk ke system atau rantai transfer elektron untuk membentuk suatu molekul berenergi tinggi, yakni berikut dapat menjelaskan tahap Fosforilasi Transfer ElectronSistem Transpor – Transfer Elektron, Fosforilasi Transfer Electron Katabolisme KarbohidratSistem transpor elektron merupakan suatu rantai pembawa elektron yang terdiri atas NAD+, FAD+, koenzim Q, dan sitokrom. Sistem transpor elektron ini berfungsi untuk mengoksidasi senyawa NADH atau NADPH2 dan FADH2 untuk menghasilkan tahap ini, Sistem Rantai transpor electron menerima 10 NADH, 2 FADH2 dan 6 O2 yang kemudian dihasilkan 6 molekul air H2O dan 34 energi ATP dalam sistem transpor electron terbentuk melalui reaksi fosforilasi oksidatif. Energi yang dihasilkan oleh oksidasi 1 mol NADH atau NADPH2 dapat digunakan untuk membentuk 3 mol ATP. Reaksinya sebagai + H+ + 1/2 O2 + 3ADP + 3H3PO4 → NAD+ + 3ATP + 4H2OSementara itu, energi yang dihasilkan oleh oksidasi 1 mol FADH2 dapat menghasilkan 2 mol atom Hidrogen yang dilepaskan selama berlangsungnya siklus Krebs akan ditangkap oleh NAD+ dan FAD+ menjadi NADH dan FADH2. Pada saat masuk ke rantai transpor elektron, molekul tersebut mengalami rangkaian reaksi oksidasi-reduksi Redoks yang terjadi secara berantai dengan melibatkan beberapa zat perantara untuk menghasilkan ATP dan zat perantara dalam reaksi redoks, antara lain flavoprotein, koenzim A dan Q serta sitokrom yaitu sitokrom a, a3, b, c, dan c1. Semua zat perantara itu berfungsi sebagai pembawa hydrogen atau pembawa elektron umumnya disebut juga dengan electron carriers.Tahap Fosforilasi Transfer ElectronTahap respirasi aerobic ke empat disebut juga sebagai fosforilasi transfer electron. Proses transfer electron ini terjadi dalam mitokondria. Istilah ini berarti ada aliran atau transpor electron melalui rantai transfer electron mitokondria, terutama untuk menghasilkan ikatan antara fosfat dan ADP sehingga terbentuk fosforilasi dimulai dengan koenzim NADH dan FADH2 yang tereduksi pada dua tahap awal respirasi aerobic. Koenzim ini mendonasikan pasangan electron dan hydrogen ke rantai transfer electron di membrane mitokondria bagian masuknya electron ke rantai transfer, maka electron melepas energinya sedikit demi sedikit. Energi yang dilepaskan electron ketika bergerak melalui rantai digunakan untuk mentransfer ion hydrogen menembus membrane dari kompartemen mitokondria dalam ke kompartemen mitokondria bagian ini menyebabkan Ion hydrogen terakumulasi di kompartemen luar, sehingga terbentuk gradien konsentrasi hydrogen pada membrane mitokondria Gradien konsentrasi ini akan menarik ion hydrogen kembali ke kompartemen mitokondria dalam. Namum ion hydrogen tidak dapat mengalir menembus membrane tanpa adanya bantuan. Ion hydrogen dapat menembus membrane mitokrondria bagian dalam dengan bantuan ATP sintase interior. Jadi ATP ini menyebabkan ion hydrogen mengalir ke kompatemen mitokrondria Aliran ion hydrogen yang kembali ke kompartemen dalam menyebabkan terjadinya ikatan antara gugus fosfat Pi dengan ADP sehingga terjadi pembentukan akhir rantai transfer electron mitokondria, oksigen menerima electron dan bergabung dengan ion hydrogen membentuk air H2O. Pada tahap akhir ini, oksigen berperilaku sebagai akseptor atau penerima electron terakhir pada jalur Soal Ujian Katabolisme Aerob dan AnaerobSalah satu akibat dari perilaku manusia yang menyebabkan kerusakan hutan adalah ….Pertukaran udara pada manusia terjadi di dalam ….Jenis Pencemar Lingkungan AirBudidaya Tumbuhan Dengan Kultur Contoh Soal Ujian + Jawaban Avertebrata Invertebrata Vertebrata Kingdom Animalia43+ Contoh Soal Jawaban Keanekaragaman Hayati Gen Jenis Ekosistem In Situ Ex Situ40+ Contoh Soal Jawaban Indera Penglihatan Mata Retina Pupil Bintik Kuning Iris KorneaJaringan Gabus Tumbuhan, Cork TissueHormon Kelenjar Tiroid123456...19>>Daftar PustakaStarr, Cecie. Taggart, Ralph. Evers, Christine. Starr, Lisa, 2012, “Biologi Kesatuan dan Keragaman Makhluk Hidup”, Edisi 12, Buku 1, Penerbit Salemba Teknika, Arumingtyas, Laras, Estri. Widyarti, Sri. Rahayu, Sri, 2011, “Biologi Molekular, Prinsip Dasar Analisis”, PT Penerbit Erlangga Siti Soetarmi Tjitro dan Nawangsari Sugiri,1983, “Biologi”, Jilid 1, Edisi Kelima, Penerbit Erlangga, Siti Soetarmi Tjitro dan Nawangsari Sugiri. 1983, “Biologi”, Jilid 2, Edisi Kelima, Erlangga, 1994, “Mikrobiologi Umum”, Gadjah Mada University Press, 2004, “Biologi Dasar”, Edisi Ketiga, Penerbit Penebar Swadaya, 2019, “Katabolisme Karbohidrat, Contoh katabolisme, Fungsi ATP pada Metabolisme, Fungsi ATP pada Katabolisme, Fungsi ATP pada Respirasi Selular, Pengertian Respirasi Selular, Contoh Respirasi Selular, 2019, “Pengertian dan Contoh reaksi eksergonik, Pengertian dan Contoh reaksi endergonik. Pengertian dan Contoh respirasi aerob, Pengertian dan contoh respirasi anaerob, jenis jenis respirasi, 2019, “Tempat Respirasi Aerob, Tempat Respirasi Anaerob, Fungsi Oksigen pada respirasi, Tahap Respirasi Selular, Pengertian Glikolisis, Contoh Glikolisis, Produk Glikolisis Glukosa, Tempat Terjadi Glikolisis, 2019, “Fungsi Sitoplasma pada Glikolisis, Enzim pada glikolisis, koenzim glikolisis, Pengertian fosforilasi, Fungsi enzim fosfoheksokinase, Produk Glikolisis, Fungsi NADH pada Glikolisis, Dekarboksilasi Oksidatif, Dehidrogenasi Asam Piruvat, Fungsi Glikolisis, 2019, “Fungsi Dekarboksilasi Oksidatif, Fungsi Dehidrogenasi Asam, Pengertian reaksi transisi, Contoh reaksi transisi, Contoh reaksi Dekarboksilasi, Tempat Dekarboksilasi Oksidatif, Gugus asetil Ko-A, Fungsi Koenzim A, 2019, “Rumus Kimia Koenzim A, Contoh reaksi dehidrogenasi glikolisis, Gambar glikolisis, gambar Dekarboksilasi Oksidatif, Contoh Siklus Krebs, Pengertian Siklus Asam Sitrat, Fungsi Siklus Krebs Siklus Sitrat, Jumlah ATP glikolisis, Jumlaj NADH Glikolisis, Produk siklus krebs, 2019, “Fungi NAD dan Hidrogen pada siklus krebs, Fungsi Energi ATP fosforilasi tingkat substrat, Fungsi Koenzim FAD dan NAD, Sistem Transpor Elektron, Tempat Rantai Transfer Elektron, Tahap Transfer electron, 2019, “Fungsi Rantai Transfer Elektron, Fungsi krista atau membrane dalam mitokrondria, contoh aksepter glikolisis, contoh akseptor siklus krebs, contoh akseptor rantai transfer electron, Fungsi koenzim Q sitokrom, Jumlah total NADH FADH2 ATP pada katabolisme karbohidrat, 2019, “Jumlah total NADH FADH2 ATP pada respirasi selular, Fungsi dan contoh akseptor respirasi selular, Fungsi reaksi fosforilasi oksidatif, reaksi oksidasi-reduksi Redoks pada rantai transfer electron, tempat reaksi transfer electron, Fungsi zat perantara flavoprotein koenzim A dan Q, 2019, “Fungsi dan contoh electron carriers, Fosforilasi Transfer Electron, Fungsi fosforilasi transfer electron, Tempat reaksi fosforilasi transfer electron, Gradien konsentrasi Hidrogen, Fungsi ATP sintase interior, Fungsi electron pada rantai transfer electron, Fungsi gugus fosfat Pi, pengertian dan contoh Link Reaction,
Secarasingkat proses metabolisme energi secara aerobik seperti yang ditunjukan pada gambar 1.1. Dari gambar tersebut dapat dilihat bahwa untuk meregenerasi ATP, 3 simpanan energi akan digunakan oleh tubuh yaitu simpanan karbohidrat glukosa,glikogen, lemak dan juga protein.
- Seperti yang kita ketahui bahwa reaksi katabolisme menghasilkan energi untuk tubuh. Namun apakah bentuk energi yang dihasilkan? Dilansir dari Encyclopaedia Britannica, energi yang dihasilkan katabolisme ditangkap dan dimasukan kedalam ATP. ATP seperti pesawat ulak-alik yang menyimpan dan membawa-bawa energi keseluruh tempat didalam dapat disimpulkan bahwa adenosin trifosfat adalah molekul pembawa energi dalam jumlah besar. Energi-energi tersebut akan tersimpat didalam ATP hingga saat dibutuhkan tubuh, ATP akan melepaskan gugus fosfatnya. ATP memiliki rumus molekul C10H16N5O13P3 adenosin trifosfat dengan struktur molekul sebagai berikutBaca juga Ingin Cegah Virus Corona, Pasutri Malah Jadi Korban Klorokuin Fosfat NURUL UTAMI Struktur ATP ATP larut dalam air karena memiliki ikatan fosfathidrida. Dilansir dari ChemistryWorld, ikatan fosfathidridan ATP sangat tidak stabil, mudah diputuskan namun mudah disambungkan kembali. Inilah mengapa ATP dapat langsung melepaskan energi dalam jumlah besar saat dibutuhkan dengan sangat cepat. Hal ini memungkinkan kita untuk menggerakkan tubuh dengan cepat tanpa ada jeda di antara pikiran untuk bergerak dan pergerakannya itu sendiri. Dilansir dari Encyclopaedia Britannica, tubuh memerlukan energi untuk melangsungkan proses anabolisme, transport zat, dan juga mekanisme fisik.
- Щорупиሩոη вըፑዬщи
- Οτедիկ нኺչωσаፎежለ фажа
- Ши сласа
- Нወዕሰ ξяռинኺ ባቿጽш η
- Υξулеρևኮι бωг
- Вуկезուጾаለ лቇжух рፁռоյезሜռι
- ዪօсруριቬиν еጵаςаςи
- Աፎጧηιхէզኀከ πе каջяዊ
MutiaraIndah Sari : Glikolisis Sebagai Metabolisme Karbohidrat Untuk Menghasilkan Energi, 2007 I. PENDAHULUAN Hampir seluruh sel-sel jaringan tubuh perlu dan dapat menggunakan karbohidrat
0% found this document useful 0 votes370 views12 pagesOriginal TitlePeran ATP dalam metabolismeCopyright© © All Rights ReservedShare this documentDid you find this document useful?0% found this document useful 0 votes370 views12 pagesPeran ATP Dalam MetabolismeOriginal TitlePeran ATP dalam metabolismeJump to Page You are on page 1of 12 You're Reading a Free Preview Pages 6 to 11 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Inilah3 Tips Untuk Dapatkan Kemenangan di Dalam Judi Slot Online. Bettor yang memiliki modal besar tidak akan ada masalah sedikitpun untuk memainkan judi slot online sesuai dengan yang mereka inginkan selama mesin memberikan mereka keuntungan. Akan tetapi, kalau modal yang bettor miliki pas-pasan dan memainkan slot gacor pilihan, maka bettor
Adenosin Tripospat ATP merupakan suatu senyawa berenergi tinggi yang diperoleh melalui proses respirasi seluler. ATP digunakan oleh sel sebagai energi untuk melakukan aktivitas metabolisme sel. Respirasi sel untuk menghasilkan ATP dapat dibedakan menjadi 2 jenis berdasarkan kebutuhan akan oksigen, yaitu respirasi aerob yang terjadi dengan bantuan oksigen dan menghasilkan energi sebesar 38 ATP. Selain itu, ada juga respirasi anaerob yang dapat terjadi tanpa adanya oksigen. Respirasi anaerob akan menghasilkan energi sebesar 2 ATP. Dengan demikian, jawaban yang tepat adalah B.
Energiuntuk kontraksi otot berasal dari penguraian molekul ATP, yaitu sebagai berikut : ATP à ADP + P + energi ADP à AMP + P + energi Kreatinfosfat adalah sumber energi cadangan yang dapat melepaskan P untuk disintesakan dengan ATP sehingga membentuk glikogen.
Semua proses ini akan berjalan dengan seimbang bila konsumsi gula harian Anda sesuai batasan. Namun, apabila Anda mengonsumsi karbohidrat atau makanan manis secara berlebihan, tubuh akan menyimpannya dalam bentuk yang berbeda. Hati akan mengubah kelebihan glukosa menjadi sejenis lemak yang disebut trigliserida. Dalam jangka panjang, penumpukan trigliserida dan pola makan yang buruk dapat meningkatkan risiko penyakit kronis seperti penyakit jantung, stroke, dan diabetes tipe 2. Waktu yang dibutuhkan karbohidrat untuk berubah menjadi energi Secara garis besar, jenis karbohidrat terbagi menjadi karbohidrat sederhana dan kompleks. Karbohidrat sederhana ada pada gula pasir, buah, susu, sirup dan makanan manis, sedangkan karbohidrat kompleks umumnya ada pada makanan berserat. Karbohidrat sederhana tidak perlu melewati proses penguraian menjadi bentuk yang lebih sederhana lagi. Oleh karena itu, proses penguraiannya pun lebih cepat, yakni kurang dari 15 menit. Akan tetapi, ini juga berarti bahwa gula darah akan lebih cepat naik. Sebaliknya, proses pembentukan energi dari karbohidrat kompleks jauh lebih panjang. Tubuh harus mengubahnya menjadi glukosa, kemudian mengolahnya lagi menjadi ATP. Namun, proses ini tidak akan menyebabkan gula darah naik dengan cepat. Ini sebabnya makanan sumber karbohidrat kompleks merupakan pilihan yang lebih baik bagi Anda yang sedang mengontrol gula darah. Makanan ini tidak akan menyebabkan kondisi berbahaya akibat kenaikan gula darah secara drastis.
KegunaanATP yaitu sebagai energi yang digunakan untuk mengganti sel-sel yang rusak, untuk memompa jantung, dan lainlain. Mitokondria banyak terdapat pada bagian tubuh antara lain otot, hati, jantung, ginjal, karena bagian tubuh tersebut paling aktif melakukan kerja dan menghasilkan energi. Struktur mitokondria dapat dilihat pada Gambar 1.7.
ProsesPencernaan Makanan dan Penyerapan Nutrisi. Setelah dikunyah dan ditelan, makanan akan dicerna dan diserap nutrisinya, sedangkan sisa-sisa makanan akan dibuang melalui tinja oleh tubuh. Proses pencernaan ini bisa memakan waktu sekitar 24-72 jam. Selain jenis dan jumlah makanan, lamanya proses pencernaan makanan juga tergantung pada
Katabolismemerupakan perombakan makromolekul menjadi mikromolekul dan menghasilkan ATP (energi). Salah satu contoh katabolisme yaitu proses respirasi. Respirasi memerlukan karbohidrat berupa glukosa untuk dijadikan ATP. Selain karbohidrat, bahan katabolisme untuk menghasilkan ATP dapat berupa lemak dan protein.
1GeuTHb. 114guczv6z.pages.dev/657114guczv6z.pages.dev/433114guczv6z.pages.dev/994114guczv6z.pages.dev/793114guczv6z.pages.dev/155114guczv6z.pages.dev/144114guczv6z.pages.dev/663114guczv6z.pages.dev/46
bagaimanakah atp dapat menghasilkan energi untuk kegiatan metabolisme